Active Motif's Podcast

  • Autor: Vários
  • Narrador: Vários
  • Editor: Podcast
  • Duración: 103:07:43
  • Mas informaciones

Informações:

Sinopsis

A lively discussion about the latest tips and techniques for epigenetics research.

Episodios

  • The Discovery of Genomic Imprinting (Azim Surani)

    19/06/2025 Duración: 56min

    In this episode, Professor Asim Surani, shares how his extensive research has significantly advanced the understanding of how the mammalian germline is specified, the mechanisms governing epigenetic reprogramming, and the critical conditions that maintain genomic integrity during early development. The discussion, led by Dr. Stefan Dillinger, provides an overview of Surani's journey into biology, the evolution of his research interests, and the pivotal discoveries that have shaped the field of epigenetics. Dr. Surani discusses the groundbreaking experiment he co-conducted in 1984 that led to the discovery of genomic imprinting. Initially a student involved in in vitro fertilization at Cambridge, he became intrigued by the implications of parthenogenesis in mammals. Challenging the prevailing cytoplasmic theory of development, Surani and his collaborators demonstrated that normal mammalian development requires contributions from both parental genomes, leading to the introduction of the concept of genomic impri

  • Exploring DNA Methylation and TET Enzymes in Early Development (Petra Hajkova)

    05/06/2025 Duración: 39min

    In this episode of the Epigenetics Podcast, we talked with Petra Hajkova from the MRC Laboratory of Medical Sciences about her work on epigenetics research on mammalian development, highlighting DNA methylation, histone modifications, and TET enzymes, along with her journey in molecular genetics and future research on epigenetic maintenance. Dr. Hajkova's early work focused on DNA methylation and resulted in innovative collaboration that allowed her to develop bisulfide sequencing techniques. We discuss her transition to the UK, where she began working in Azim Surani's lab at the University of Cambridge. Dr. Hajkova describes the excitement of researching chromatin dynamics in the mouse germline, leading to significant findings published in Nature. Her story highlights the intense yet rewarding nature of postdoctoral research as she navigated the complexities of working with embryos for the first time. As her research progressed, Dr. Hajkova established her own lab at the MRC London Institute of Medical Scien

  • Epigenetic Regulation and Small Molecule Innovation in AML: Advances in Translational Leukemia Research (Ani Deshpande)

    22/05/2025 Duración: 01h58s

    In this episode of the Epigenetics Podcast, we talked with Ani Deshpande from Sanford Burnham Prebys about his work on epigenetic regulation and developing small molecules through high throughput screens for AML. Throughout our discussion, we delve into Dr. Despande's journey into the field of biology and science, tracing his evolution from a literature enthusiast in Mumbai to a dedicated cancer researcher. He reflects on his formative experiences during his PhD at Ludwig Maximilian University in Munich, where she developed murine models for refractory acute myeloid leukemia (AML). We examine these models' contributions to therapeutic discovery and understanding the intricate mechanisms underscoring AML's complexities. Transitioning to his postdoctoral work at Scott Armstrong's lab in Boston, Dr. Despande shares his insights on the importance of epigenetic regulators, such as DOT1L, in leukemias, and how they can serve as strategic therapeutic targets. His ambitious pursuit of translational research is furthe

  • Beyond Mom: Rethinking Paternal Influence in Epigenetic Inheritance (Raffaele Teperino)

    08/05/2025 Duración: 59min

    In this episode Dr. Raffaele Teperino shares insights from his ongoing research focused on developmental programming, particularly how paternal health before conception influences not only offspring health but also maternal health outcomes. As we trace his academic journey from studying biotechnology and pharmacology to leading his own lab, Dr. Teperino reflects on his early fascination with medicine, the pivotal experiences that shaped his career, and the integration of epigenetics into understanding metabolic diseases. We discuss the nuances of epigenetics—going beyond simple chromatin biology to examine its wider implications on phenotypic variation. Dr. Teperino emphasizes his approach of modeling relevant physiological phenomena in the lab to better understand the underlying mechanisms driving conditions like obesity and metabolic disruption. A particular focus is placed on his experiences during his postdoctoral years, where he investigated the developmental pathways of hedgehog signaling and its metabo

  • Evolutionary Epigenetic Clocks and Epigenetic Inheritance in Plants (Frank Johannes)

    24/04/2025 Duración: 39min

    In this episode of the Epigenetics Podcast, we talked with Dr. Frank Johannes from the Technical University of Munich in Freising about his work on evolutionary clocks and epigenetic inheritance in plants. In this episode we discuss Dr. Johannes pursuits in understanding how heritable epigenetic variations, particularly through DNA methylation, affect phenotypic diversity in plants. He shared insights about groundbreaking research initiatives he has led, including one of the first population epigenetic studies in plants that effectively linked heritable DNA methylation changes to critical traits like flowering time and root length. This work underscored the importance of epigenetic factors that extend beyond traditional genetic sequences, illustrating a significant shift in how we comprehend inheritance and trait variation in organisms. As we dug deeper into the science, we examined Dr. Johannes's innovative approaches to studying chromatin-based mechanisms of genome regulation, allowing for a nuanced underst

  • Neuroepigenetic Mechanisms and Primate Epigenome Evolution (Boyan Bonev)

    10/04/2025 Duración: 45min

    In this episode of the Epigenetics Podcast, we talked with Boyan Bonev from the HelmholtzZetrum in Munich about his work on neuroepigenetics, focusing on gene regulation, chromatin architecture, and primate epigenome evolution, This Episode focuses on Dr. Bonev’s recent research, particularly focusing on how chromatin architecture and gene regulation influence neural cell identity and function. He discusses his work investigating transcriptional activity in relation to chromatin insulation, highlighting a critical finding that induced expression of genes does not necessarily lead to chromatin insulation—a point that complicates prior assumptions about the relationship between gene expression and chromatin organization. This study aimed to determine the causal versus correlative aspects of chromatin architecture in brain development and links it to developmental processes and neurodevelopmental disorders. Building on his findings in gene regulation, Dr. Bonev elaborates on a significant study he conducted in h

  • The Role of H3K4me3 in Embryonic Development (Eva Hörmanseder)

    27/03/2025 Duración: 37min

    In this episode of the Epigenetics Podcast, we talked with Dr. Eva Hörmanseder from the HelmholtzZentrum in Munich about her work on epigenetic mechanisms in cellular memory and gene regulation. In this episode, we delve into the fascinating world of cellular memory and gene regulation with Dr. Eva Hermanns-Eder from the Helmholtz Zentrum in Munich. Her research centers on how cells maintain their identity through the process of mitotic divisions, which is crucial for understanding both development and various diseases. We explore the role of chromatin dynamics and epigenetic modifications in switching genes on and off over time, which has significant implications for fields like cancer biology and regenerative medicine. The discussion starts with Dr. Hörmanseder's recent studies on epigenetic memories, particularly focusing on the concept of transcriptional memory in nuclear transfer embryos. She explains her work with H3K4 trimethylation, a crucial epigenetic mark associated with active transcription states

  • Using RICC-Seq to Probe Short Range Chromatin Folding (Viviana Risca)

    13/03/2025 Duración: 46min

    In this episode of the Epigenetics Podcast, we talked with Viviana Risca from Rockefeller University about her work on RICC-Seq and how it's used to probe DNA-DNA contacts in intact or fixed cells using ionizing radiation. This Interview covers Dr. Viviana Risca's cutting-edge methodologies, such as RICC-seq, which enables high-resolution analysis of chromatin structures without traditional cross-linking biases. We engage in a detailed discussion about how different techniques, such as RICC-seq and Micro-C, complement each other to provide robust insights into nucleosome interactions and chromatin dynamics. Dr. Risca articulates the challenges and innovations within her lab as it navigates through the complexities of chromatin mapping. The episode takes an exciting turn toward traversing the landscape of her future research directions, particularly studying the role of linker histones and other chromatin architectural proteins in regulating gene expression. Dr. Risca emphasizes the importance of understanding

  • The Mechanism of ATP-dependent Remodelers and HP1 Gene Silencing (Geeta Narlikar)

    27/02/2025 Duración: 39min

    In this episode of the Epigenetics Podcast, we talked with Geeta Narlikar from UCSF about her work on chromatin remodeling, Heterochromatin Protein 1, and the molecular mechanisms that influence the genome. The conversation starts with a pivotal paper from the early days of Dr. Narlikars research career, titled "Distinct Strategies to Make Nucleosomal DNA Accessible," focused on two ATP-dependent remodelers, BRG1 and SNF2H. Here, she notes that while both enzymes operate similarly, they generate different outputs and play distinct biological roles within the cell. The research revealed that BRG1 is more aggressive in altering nucleosome configuration, aligning with its role in transcription activation, while SNF2H showed a more refined approach in the formation of heterochromatin. Transitioning to her work at UCSF, she emphasized the importance of collaboration and mentoring within a research group. Her focus then shifted towards the ACF ATP-dependent chromatin assembly factor, hypothesizing how ACF measures

  • Polycomb Proteins, Gene Regulation, and Genome Organization in Drosophila (Giacomo Cavalli)

    13/02/2025 Duración: 44min

    In this episode of the Epigenetics Podcast, we talked with Giacomo Cavalli from the Institute of Human Genetics in Montpellier about his work on critical aspects of epigenetic regulation, particularly the role of Polycomb proteins and chromatin architecture. We start the Interview by talking about Dr. Cavalli's work on Polycomb function in maintaining chromatin states and how it relates to gene regulation. He shares insights from his early lab experiences, where he aimed to understand the inheritance mechanisms of chromatin states through various models, including the FAB7 cellular memory module. The discussion uncovers how Polycomb proteins can silence gene expression and the complex interplay between different epigenetic factors that govern this process. Dr. Cavalli also addresses how he has investigated the recruitment mechanisms of Polycomb complexes, highlighting the roles of several DNA-binding proteins, including DSP-1 and GAGA factor, in this intricate regulatory landscape. He emphasizes the evolutio

  • The Interplay of Nutrition, Metabolic Pathways, and Epigenetic Regulation (Ferdinand von Meyenn)

    23/01/2025 Duración: 48min

    In this episode of the Epigenetics Podcast, we talked with Ferdinand von Meyenn from ETH Zürich about his work on the interplay of nutrition, metabolic pathways, and epigenetic regulation. To start Dr. Meyenn recounts his pivotal research on DNA methylation in naive embryonic stem cells during his time with Wolf Reick. He explains the dynamics of global demethylation in naive stem cells, revealing the key enzymes involved and the unexpected findings surrounding UHF1—its role in maintaining DNA methylation levels and influencing the methylation landscape during early embryonic development. Dr. Meyenn then shares his perspective on the scientific transition to establishing his own lab at ETH. He reflects on his ambitions to merge the fields of metabolism and epigenetics, which is a recurring theme throughout his research. By investigating the interplay between metabolic changes and epigenetic regulation, he aims to uncover how environmental factors affect cellular dynamics across various tissues. This leads to

  • Single-Molecule Adenine Methylated Oligonucleosome Sequencing Assay (SAMOSA) (Vijay Ramani)

    09/01/2025 Duración: 52min

    In this episode of the Epigenetics Podcast, we talked with Vijay Ramani from the Gladstone Institute about his work on Single-Molecule Adenine Methylated Oligonucleosome Sequencing Assay (SAMOSA). Our discussion starts with Vijay Ramani's impactful contributions to the field during his time in Jay Shendure's lab, where he worked on several innovative methods, including RNA proximity ligation. This project was conceived during his graduate studies, aiming to adapt techniques from DNA research to investigate RNA structures—a largely unexplored area at the time. We delved into the nuances of his experiences in graduate school, emphasizing how critical it was to have mentors who provided room for creativity and autonomy in experimental design. Dr. Ramani then shares insights about his foray into developing more refined methodologies, such as in-situ DNA Hi-C, a revolutionary protocol tailored for three-dimensional genomic mapping. He explained the rationale behind his projects, comparing the outcomes with contemp

  • Epigenetic Consequences of DNA Methylation in Development (Maxim Greenberg)

    19/12/2024 Duración: 44min

    In this episode of the Epigenetics Podcast, we talked with Maxim Greenberg from the Institute Jacob Monot about his work on epigenetic consequences of DNA methylation in development. In this interview we explore how Dr. Greenberg’s work at UCLA involved pioneering experiments on DNA methylation mechanisms and how this period was marked by significant collaborative efforts within a highly competitive yet supportive lab environment that ultimately lead to publications in high impact journals. His transition to a postdoctoral position at the Institut Curie with Deborah Bourc'his harnessed his expertise in mammalian systems, examining chromatin changes and the implications for embryonic development. Dr. Greenberg explained the nuances of his research, particularly how chromatin modifications during early development can influence gene regulatory mechanisms later in life, providing a compelling narrative about the potential long-term impacts of epigenetic changes that occur in utero. Throughout our conversation, w

  • R-Loop Biology in Health and Disease (Natalia Gromak)

    05/12/2024 Duración: 29min

    In this episode of the Epigenetics Podcast, we talked with Natalia Gromak from the University of Oxford about her work on R-Loop biology in health and disease. In this interview Dr. Gromak delves into her significant research on transcription and RNA biology, particularly focusing on the molecular mechanisms involved at transcriptional pause sites. She describes her early work in understanding transcription termination and how her team investigated the role of specific RNA and DNA structures, including R-loops, that could influence polymerase progression. This exploration into R-loops—complexes formed by RNA and DNA interactions—was a key turning point in her research, as she and her colleagues identified their regulatory functions within the human genome. Discussion transitions into her findings regarding the implications of R-loops in diseases like Friedrich's ataxia and Fragile X syndrome. Dr. Gromak then elucidates how the pathological expansion of repeat sequences in these conditions interferes with norm

  • The Menin-MLL Complex and Small Molecule Inhibitors (Yadira Soto-Feliciano)

    21/11/2024 Duración: 40min

    In this episode of the Epigenetics Podcast, we talked with Yadira Soto-Feliciano from MIT about her work on the Menin-MLL complex and the effect of small molecules on its stability in leukemia. We explore the pivotal moments that led her to cancer biology during her graduate studies, where her work included ground-breaking research on the role of the plant homeodomain Finger protein-6 (PHF-6) in leukemia. This work bridged the realms of chromatin accessibility, transcription factors, and cancer cell lineage, providing critical evidence for the concept of lineage plasticity in cancer biology—a topic that has gained significant traction in recent years. Dr. Soto-Feliciano discusses how advances in techniques like CRISPR and ChIP-sequencing have shaped her research, enabling deeper insights into the mechanisms underlying cancer cell identity. As our discussion transitions, Dr. Soto-Feliciano shares her experience in David Allis's lab, illustrating how the collaboration across diverse scientific disciplines enhan

  • Grant Writing in Academia and Industry – Tips for Success (Mary Anne Jelinek)

    14/11/2024 Duración: 39min

    In this episode of the Epigenetics Podcast, we talked with Mary Anne Jelinek Associate Director of R&D at Active Motif about writing and reviewing grants in academia and industry. Learn from Dr. Jelinek’s years of experience writing and reviewing grants and get her best advice and insight for success. Hear about similarities and differences in preparing grants in academia vs. biotech or other industry settings. Key insights include: Finding Grant opportunities that exist for different sectors and countries, from the familiar ones like NIH and NSF in the United States grant funding offered by NATO for member countries.  Learn about grants targeted to small businesses and specific allocation of resources intended to foster and promote innovation and entrepreneurship and how to navigate confidentiality when writing grants in industry, being mindful of conflict of interest and best practices.  Coming up with ideas is easy – but how do you find institutes interested in funding those research areas? Get tips on

  • DNase Hypersensitive Sites and Chromatin Remodeling Enzymes (Carl Wu)

    31/10/2024 Duración: 55min

    In this episode of the Epigenetics Podcast, we talked with Carl Wu from John's Hopkins University about his work on nucleosome remodeling, histone variants, and the role of single-molecule imaging in gene regulation. Our discussion starts with Carl Wu sharing his first significant milestones, a paper in "Cell" and the serendipitous discovery of DNA hypersensitive sites, which transformed our understanding of chromatin accessibility and its implications for gene regulation. As we delve into Dr. Wu’s specific areas of research, he elaborates on the biochemistry of nucleosome remodeling and the intricate role of chromatin remodeling enzymes like NURF. We discuss how these enzymes employ ATP hydrolysis to reposition nucleosomes, making DNA accessible for transcription. He then explains the collaborative relationship between chromatin remodelers and transcription factors, showcasing the fascinating interplay that governs gene expression and regulatory mechanisms. The conversation takes a deeper turn as we explore

  • Epigenetic Mechanisms of Mammalian Germ Cell Development (Mitinori Saitou)

    17/10/2024 Duración: 39min

    In this episode of the Epigenetics Podcast, we talked with Mitinori Saitou from Kyoto University about his work on germ cell development, focusing on proteins like BLIMP1 and PRDM14, reprogramming iPSCs, and his vision to address infertility and genetic disorders through epigenetic insights. To start our discussion, Dr. Saitou shares the foundation of his research, which centers on the mechanisms of germ cell development across various species, including mice, non-human primates, and humans. He provides insight into his early work examining the roles of two key proteins: BLIMP1 and PRDM14. These proteins are essential for germline specification in mammals, and their functions are unveiled through detailed exploration of knockout models. In particular, Dr. Saitou elucidates the critical events in germ cell specification, highlighting how disruptions to the functions of these proteins lead to significant impairments in development. As the conversation deepens, we discuss Dr. Saitou’s groundbreaking advances in

  • Malaria Chromatin Structure and its Transcriptional Regulation (Karine Le Roch)

    03/10/2024 Duración: 41min

    In this episode of the Epigenetics Podcast, we talked with Karine Le Roch from the University of California at Riverside about her work on malaria chromatin structure and its transcriptional regulation. In this Interview Dr. Le Roch discusses her investigation of post-transcriptional controls and nucleosome positioning in Plasmodium falciparum, employing next-generation sequencing and chromatin profiling methods. Karin emphasizes how these methodologies contribute to a comprehensive understanding of gene regulation beyond mere transcription initiation, emphasizing the significance of mRNA binding proteins and their role in stabilizing gene transcripts for translation. This exploration of the interaction between chromatin structure, transcriptional dynamics, and post-transcriptional regulation reveals a multidimensional perspective of gene expression. Transitioning to her lab’s focus on high-throughput genomic technologies, we discuss how Karin and her team are uncovering conserved and species-specific genomic

  • Characterizing Chromatin at the Nuclear Lamina (Bas van Steensel)

    19/09/2024 Duración: 40min

    In this episode of the Epigenetics Podcast, we talked with Bas van Steensel from the Netherlands Cancer Institute about his work on characterizing chromatin at the Nuclear Lamina. The Interview starts with discussing Bas van Steensel's significant contributions to understanding genome-nuclear lamina interactions. Bas detailed the development of the DAM-ID technique during his postdoctoral studies, which provided a novel way to map genome-wide occupancy and identify Lamina-Associated Domains (LADs). He elaborated on how LADs reveal a distinct domain architecture, often correlating with gene expression levels. This prompted an exploration of the dynamics of these domains during differentiation processes, allowing insights into how gene activation and repression are influenced by their positioning relative to the nuclear lamina. The conversation highlighted the intricate relationship between chromatin dynamics and gene regulation, with Bas sharing compelling findings on how LADs behave during cell differentiatio

página 1 de 8