Sinopsis
If you want to learn how data science, artificial intelligence, machine learning, and deep learning are being used to change our world for the better, you’ve subscribed to the right podcast. We talk to entrepreneurs and experts about their experiences employing new technology—their approach, their successes, their failures, and the outcomes of their work. We make these difficult concepts accessible to a wide audience.
Episodios
-
Structuring Your Data Science Dream Team
26/09/2019 Duración: 15minThe way you organize your data science team will greatly affect your business’s outcome. This episode discusses different structures for a data science team, as well as top down versus bottom up approaches, how to get data science solutions into production organically, and how to be part of the business while remaining in contact with other data scientists on the team. Mark Lowe: Having lived through small scale, two people working, to large scale, thousands of people in your organization, the way that you organize the data science team has dramatic effect on its productivity. Ginette Methot: I’m Ginette, and I’m Curtis, and you are listening to Data Crunch, a podcast about how applied data science, machine learning, and artificial intelligence are changing the world. Data Crunch is produced by the Data Crunch Corporation, an analytics training and consulting company. Building effective data science processes is tough. Mode, the data science platform, has compiled three tips to make it a bit easier:
-
The Hidden World of Data Science in Utilities
19/09/2019 Duración: 19minDavid Millar is a man bringing analytical solutions to an industry that historically has had little data. But with the explosion of smart devices, that is all changing, and the way utilities operate is as well. David Millar: The way that electricity markets work is that you have what's called the day ahead market. And so the day before, let's say one o'clock tomorrow, markets run, and this is a big optimization problem. Ginette Methot: I'm Ginette Curtis Seare: And I'm Curtis Ginette: And you are listening to Data Crunch, Curtis: A podcast about how applied data science, machine learning and artificial intelligence are changing the world. Ginette: Data Crunch is produced by the Data Crunch Corporation and analytics training and consulting company. Ginette: The father of lean startup methodology once said “There are no facts inside the building so get the heck outside.” The utilities industry is no different. Sometimes the facts that’ll make your machine learning career are waiting j
-
The Good Fight against Shadow IT
12/09/2019 Duración: 22minSimeon Schwarz has been walking the data management tightrope for years. In this episode, he helps us see the hidden organizational and economic impacts that come from leading a data management initiative, and how to understand and overcome the inertia, fears, and status quo that hold good data management back. Simeon Schwarz: Fighting against shadow IT . . . you have to find a way to adopt it, you have to find a way to incorporate it, and you have to find a way to leverage it. You will never be able to completely eliminate it. Ginette Methot: I'm Ginette. Curtis Seare: And I'm Curtis. Ginette: And you are listening to Data Crunch, Curtis: A podcast about how applied data science, machine learning and artificial intelligence are changing the world. Ginette: This might come as a surprise to some, but......tools won’t build a data-driven culture. The right people will. Read more at mode.com/datadrivenculture. m o d e dot com slash data driven culture. Ginette: Today we speak with S
-
Using Data to Design Tests People Don’t Hate
04/09/2019 Duración: 18minDavid Saben is on a mission to make taking tests less painful, and he’s using data to do it. In this episode, he’ll discuss reviving methods developed in 1979 to shorten tests and make them more effective, as well as how to use psychometrics to aid in the design and crafting of an effective test. David Saben: When I see my son who's 11 years old, spending three days and testing when I know there's absolutely no reason for it that you can do that in an hour. Ginette Methot: I'm Ginette Curtis Seare: And I'm Curtis Ginette: And you are listening to Data Crunch Curtis: A podcast about how applied data science, machine learning and artificial intelligence are changing the world. The father of lean startup methodology once said “There are no facts inside the building so get the heck outside.” The education industry is no different. Sometimes the facts that’ll make your machine learning career are waiting just outside your office. Read more at mode.com/mledu m o d e dot com slash M L e
-
Activating Analytics in Business and Government
28/08/2019 Duración: 13minTodd Jones: My name is Todd Jones. I'm the chief analytics officer here at WebbMason analytics. We are a professional services firm helping our clients accelerate their analytic evolution. So I think my journey started about 10 years ago. Uh, I graduated from Princeton with a degree in operations research and financial engineering. So I could have basically taken f two paths. One, I could have went into the financial space or the second path I could have taken was going into the analytics space and I, and I chose the, the analytics space. I joined a very early company called Spry. When I joined. It was about four months old and primarily started off doing a lot of DOD contracting specific to analytics and data. And we eventually built that company to a pretty nice size. We expanded past the DOD space, got into commercial, started consulting with some large, uh, pharmaceutical companies, transportation companies, and really built that company up and then sold that in 2015. Curtis: When you fill that is Web
-
Last-Mile Logistics Analytics—for Everyone Who Isn't Amazon
21/08/2019 Duración: 23minToday we speak with Professor Ram Bala, an expert in supply chain management analytics, particularly last-mile delivery. He has very interesting insights into how today’s supply chain is evolving. He talks about various methods and algorithms he uses, the specific challenges inherent in doing last mile logistics and deliver, how pricing factors in, and how everyone is trying to catch up to Amazon. Ram Bala: Then there is this great opportunity to actually use the data effectively. But that is a long way to go in terms of coming up with the right algorithms, both on predictions, as well as the optimization to actually get this done in a meaningful way. And if you look at the landscape today in terms of industry, I would say very few companies that actually there yet. Right? I mean, Amazon obviously is a clear example of the leaders in the space, but everyone's trying to get there as well. Ginette Methot: I'm Ginette Curtis Seare: And I'm Curtis Ginette: And you are listening to Data Crunch Curti
-
Running a Successful Machine Learning Startup
10/08/2019 Duración: 26minToday, our guest, Alain Briancon, will talk to us about how to work with Fortune 500 companies and help them get quick value from their data, how to build a roadmap of incremental value during the data collection and analysis process, how they help predict and incentivize customer purchases, and how to dial in on an idea for successful data science software companies. Alain Briancon: Adding one more question to answer is always easy. The difficult part is what question can I remove and still providing insight. Ginette Methot: I'm Ginette Curtis Seare: And I'm Curtis Ginette: And you are listening to Data Crunch Curtis: A podcast about how applied data science, machine learning and artificial intelligence are changing the world. Ginette: If you’re a fortune 1000 company, and your team needs to be trained in Tableau, Statistics, Data Storytelling, or how to solve business problems with data, we’ll fly one of our expert trainers out to your site for a private group training. The most import
-
Executive Panel: How Can Data Science, ML, and AI Best Support Executive Goals
26/07/2019 Duración: 43minToday is a special episode. We welcome three executive guests from different organizations to share their experiences and insights about how data science can best support executive goals. Ginette Methot: I'm Ginette Curtis Seare: And I'm Curtis Ginette: And you are listening to Data Crunch Curtis: A podcast about how applied data science, machine learning and artificial intelligence are changing the world. Ginette: Data Crunch is produced by the Data Crunch Corporation, an analytics training and consulting company. There's a lot going on here at Data Crunch. Just this last week we finalized the merger of Vault Analytics and Lightpost Analytics under the new banner of the Data Crunch Corporation, which improves our capabilities to serve our clients head over to datacrunchcorp.com to check out our training and consulting offerings. For our executive panel, today we'll be talking to Simon Lee, the chief analytics officer from Waiter; Fatma Kocer, who is the vice president of data science
-
The Biggest Pitfalls of New Analytical Initiatives
20/07/2019 Duración: 27minOur guest Andrzej Wolosewicz has had years of experience helping companies define and build machine learning and analytical solutions that have a measurable impact on the business, and he shares with us his experience and expertise. He shares with us the biggest pitfalls he sees companies fall into over an over as they try to implement these initiatives. The problem was there was a lot of activity every month that they were doing, but in terms of progressing, their analytic capabilities were really kind of being able to to grow and be more effective. They weren't, they weren't able to do that. As the saying goes, they had a lot of action but not a lot of progress. Ginette Methot: I'm Ginette. Curtis Seare: And I'm Curtis, and you are listening to Data Crunch, a podcast about how applied data science, machine learning, and artificial intelligence are changing the world. Andre Wolosewicz: My name is Andre Wolosewicz. I am currently the director of sales at HEXstream. We are Chicago based analytics and data
-
Digital Credentials and Machine Learning Aim to Change How You Hire
12/07/2019 Duración: 19minToday we’re going to see how a clever idea and the skillful use of data is starting to disrupt how people get credentials. The use case here has the potential to remove gender and racial bias in the hiring process, help companies understand specific talent gaps in their workforce, and help learners find lucrative educational pathways they can take.
-
How to Win Hearts and Minds as a Data Leader
29/06/2019 Duración: 21minJoe Kleinhenz talks about his journey from starting out in data all the way to becoming a leader in one of the largest insurance organizations in the United States. We'll learn about the importance of staying on top of technology, how to win hearts and minds of nontechnical folks, centralized versus decentralized team, pros and cons, how to hold effective conversations with stakeholders and how to go from individual contributor to leader. Joe Kleinhenz: The critical skills you bring to the table is the ability to break down complex ideas into ones that translate for nontechnical folks. Ginette Methot: I'm Ginette. Curtis Seare: And I'm Curtis. Ginette: And you are listening to Data Crunch—a podcast about how applied data science, machine learning, and artificial intelligence are changing the world. Data Crunch is produced by the Data Crunch Corporation and analytics training and consulting company. One of the biggest challenges companies have in getting value from their data is finding the right talent. G
-
Building Data Products that Work in the Health and Wellness Industry
01/06/2019 Duración: 19minOur guest today holds a PhD in organizational psychology and has been working on data products in the health and wellness space for over a decade. We cover a lot of ground in this interview: how to create data products that work, how to avoid the unexpected consequences of poorly designed data interventions, and the importance of ethnographic thinking in data science. We'll also talk about reducing friction in data collection, the coaching data product model, and surprising things we can learn when people's routine's are broken. From today's episode, you'll come away with a better understanding of how to build contextually relevant data products that make a difference in people's lives.
-
The Road to a Data-Driven Culture in Your Organization
01/05/2019 Duración: 24minHow do you whittle the murky business of creating a data-driven culture down to a proven process? Today we talk to a guest who has done this time and time again, helping companies transform their operations. He points out the small nuances and details about the process, like questions to ask to start on the right foot, critical feedback loops to put in place along the way, and how to overcome some of the most common problems that make people give up. Ginette: I’m Ginette. Curtis: And I’m Curtis. Ginette: And you are listening to Data Crunch. Curtis: A podcast about how applied data science, machine learning, and artificial intelligence are changing the world. Ginette: Data Crunch is produced by the Data Crunch Corporation, an analytics training and consulting company. Now, let's jump into our interview with Ryan Deeds, VP of technology and data management at Assurex Global. Ginette Methot: How do you whittle the murky business of creating a data driven culture down to proven process? Today w
-
Statistics Done Wrong—A Woeful Podcast Episode
27/03/2019 Duración: 21minBeginning: Statistics are misused and abused, sometimes even unintentionally, in both scientific and business settings. Alex Reinhart, author of the book "Statistics Done Wrong: The Woefully Complete Guide" talks about the most common errors people make when trying to figure things out using statistics, and what happens as a result. He shares practical insights into how both scientists and business analysts can make sure their statistical tests have high enough power, how they can avoid “truth inflation,” and how to overcome multiple comparisons problems. Ginette: In 2009, neuroscientist Craig Bennett undertook a landmark experiment in a Dartmouth lab. A high tech fMRI machine was used on test subjects, who were “shown a series of photographs depicting human individuals in social situations with a specified emotional valence” and asked “to determine what emotion the individual in the photo must have been experiencing.” Would it be found that different parts of the brain were associated with different emotion
-
Getting into Data Science
01/03/2019 Duración: 22minWhat does it take to become a data scientist? We speak with three people who have become data scientists in the last three years and find out what it takes, in their opinions, to land a data science job and to be prepared for a career in the field. Curtis: We’ve talked a lot in our recent episodes about all the interesting things you can do with data science, and we’ve only talked a little bit recently about what it actually takes to get into the field, which is a topic that a lot of you have reached out to us and asked us to cover in a more thorough way. So today, we’re taking a broader approach on this topic by talking to three data scientists who have become data scientists in the last three years. You’re going to be able to hear all the details of each of their three journeys, how they got started, how they landed their jobs, and what their best advice is for getting into the field, and this will give you a broad view about how to get into data science from three people who have actually done it. Ginett
-
Automated Machine Learning with TransmogrifAI
31/01/2019 Duración: 12minWould you rather take a year to develop a proprietary algorithm for your company that has an accuracy of 95% or use an open source platform that takes a day to develop an algorithm that has nearly the same accuracy? In most business cases, you'd choose the latter. In this episode, we talk to Till Bergmann who works on a team that developed TransmogriAI, an open source project that helps you build models quickly.
-
The Data Scientist's Journey with Nic Ryan
28/12/2018 Duración: 19minWhat does it take to become a data scientist? Nic Ryan has been in the field for over a decade and answered thousands of questions from people looking to get into the field. In this episode, he talks about his journey into data science and his experiencing mentoring aspiring data scientists, giving advice to both beginners and seasoned professionals. Nic Ryan: I think there's sometimes a problem in data science education, and what people find interesting is they tend to focus on the algorithms, which as you know from doing data science projects is really just the last little bit. There's tens or even sometimes hundreds of decisions steps that are made until you get to that particular point. Ginette: I’m Ginette. Curtis: And I’m Curtis. Ginette: And you are listening to Data Crunch. Curtis: A podcast about how applied data science, machine learning, and artificial intelligence are changing the world. Ginette: A Vault Analytics production. Ginette: Ad space Curtis: Let’s introduce you to our guest: Nic
-
Cutting-Edge Computational Chemistry Enabled by Deep Learning
27/11/2018 Duración: 17minMachine learning is becoming a bigger part of chemistry as of the last two or three years. Industries need to have people trained in both fields, and it's taken time for them to make their way into this sector. Olexandr Isayev is at the forefront of that wave, and he talks to us about what he's done while melding deep learning and chemistry together and his vision of where he sees this field going with this new tech.
-
Python and the Open Source Community
24/10/2018 Duración: 24minPython versus R. It's a heated debate. We won't solve this raging controversy today, but we will peek into the history of Python, particularly in the open source community surrounding it, and see how it came to be what it is today—a well used and flexible programming language. Travis Oliphant: Wes McKinney did a great job in creating Pandas . . . not just creating it but organized a community around it, which are two independent steps and both necessary, by the way. A lot of people get confused by open source. They sometimes think you just kind of going to get people together and open source emerges from the foam, but what ends up happening, I’ve seen this now at least eight, nine different times, both with projects I’ve had a chance and privilege to interact with, but also other people's projects. It really takes a core set of motivated people, usually not more than three. Ginette: I’m Ginette. Curtis: And I’m Curtis. Ginette: And you are listening to Data Crunch. Curtis: A podcast about how applied dat
-
Machine Learning, Big Data, and Your Family History
26/09/2018 Duración: 21minHow can artificial intelligence, machine learning, and deep learning benefit your family? These technologies are moving into every field, industry, and hobby, including what some say is the United State's second most popular hobby, family history. Today, it's so much easier to trace your roots back to find out more about your progenitors. Tyler Folkman, senior manager at Ancestry, the leading family history company, describes to us how he and his team use convolutional neural networks, LSTMs, conditional random fields, and the like to more easily piece together the puzzle of your family tree. Ginette: Today we peek into an area rich in data that has lots of interesting AI and machine learning problems. Curtis: The second most popular hobby in the United States, some claim, is family history research. And whether that’s true or not, it's has had a lot of growth recently. Personal DNA testing products have exploded in popular over the past three years, but beyond this popular product, lots of people go a ste